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The exponential model for a regulatory enzyme

An interpretation of the linear free-energy relationship

Stanley AINSWORTH
Department of Biochemistry, University of Sheffield, Sheffield SlO 2TN, U.K.

A physical mechanism is suggested to explain the linear free-energy relationship employed in the exponential
model for a regulatory enzyme [Ainsworth (1977) J. Theor. Biol. 68, 391-413]. The interpretation depends
on the assumption that the structure of the enzyme changes in proportion to its saturation by substrate but
at a rate that is low compared with the rates ofthe association-dissociation reactions of the enzyme-substrate
system.

INTRODUCTION

The exponential model for a regulatory enzyme with
one substrate is represented by the equations:

vi Ai at
1

P l+A= (1)

and

-AGQ = kpi = ln(n ) (2)

where pi is the fractional saturation of the enzyme by
substrate A, equal to vi/ V, the ratio of the initial velocity
of the catalysed reaction at concentration Ai to the
maximum velocity observed when A is raised to a
saturating concentration. The affinity constant, ai, is
related to the fractional saturation, pi, by a constant k,
equal to ln (ax/az) where a, and a,, respectively are values
of the affinity constant corresponding to p = 1 and
p = 0. The change in affinity of the enzyme for A, as pi
varies, is supposed to arise from a change in the structure
of the protein represented by a change in free energy
-AGO. Both AGO and k are free-energy differences given
in RT units.

Eqns. (1) and (2) (or their equivalents) have been
suggested independently as models for regulatory
behaviour on at least four occasions (Thompson &
Klotz, 1971; Sturgill & Biltonen, 1976; Ainsworth, 1977;
Whitehead, 1978), but the systematic investigation of
their use has been limited to the studies by Ainsworth
and co-workers (Ainsworth, 1977, 1979; Kinderlerer &
Ainsworth, 1978; Gregory & Ainsworth, 198 1a,b).
When the equations were extended for use with two or
more ligands (substrates and effector) a wider range of
data became available for examination (Ainsworth &
Gregory, 1978; Ainsworth et al., 1981, 1983; Gregory
et al., 1983; Morris et al., 1984, 1986; Ainsworth &
Kinderlerer, 1984; Kinderlerer et al., 1986; Rhodes et al.,
1986; Ainsworth, 1986). As a result of these studies it can
be concluded that the exponential model is capable of
describing a wide range of regulatory behaviour by a
relatively limited number ofconstants. It should be noted
that the conclusion is not extended to suggest that the
success of the description proves the validity of the
model.
The physical basis for the model has received relatively

little attention. Sturgill & Biltonen (1976) and Whitehead

(1978) suggested eqns. (1) and (2) on purely empirical
grounds. Thompson & Klotz (1971),'however, developed
the equations by an Ising model approach: in particular,
they assumed that the interaction between binding sites
is very long-ranged and the number of binding sites
sufficiently large, so that each site experiences a 'mean
field' produced by the binding state of the other sites. It
is not clear how well this condition can be met by typical
allosteric enzymes, where the number ofsubstrate-binding
sites rarely exceeds four and distances of separation are
not large. It is also not clear how the 'mean field' brings
about its physical results. In effect, the original
assumptions proposed as the basis for the model by
Ainsworth (1977) are little different. It was suggested that
the measure ofprotein conformation most relevant to the
experiment v = f(A) is the constant ai and that its value
is determined by a stabilization of the protein structure
directly proportional to fractional saturation. Again, no
mechanism was suggested that might predict the required
result.
The purpose of the present paper is to propose a

physical mechanism that derives directly from eqns. (1)
and (2). The general assumptions made by Ainsworth
(1977) are repeated and it is taken as fact that eqns. (1)
and (2) accurately represent the data to which they were
applied.

THEORY

Arrangement of free-energy levels
The exponential model equation for a single ligand

(eqn. 2) can be written as:

ln ai-ln ao AGO-AGi
ln a1-ln ao AGO-AG1 (3)

Hence:

(GP- GR)- (GP- GR)
(GP- GR)- (GP GR) (4)

where' the superscripts P and R respectively define the
free energies in RT units of the enzyme-ligand complex
and the free reagents, all at unit concentration. Eqn. (4)
can be re-arranged to give:

(GP GF) (GR-GR) AGP-_AGP
Pi(GoP-GP)-(GoR-GR) AGR-AGP (5)
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L Y _ _ _ Ina, pi = 0.4

Fig. 1. Standard free energies in units of RT derived from eqn. (2) for the single-substrate exponential model with ai > 1 and k > 0

where the differences are formed relative to the Go levels.
With the definitions

ni = AGf/AGR and mi = AGf/AGP (6)
eqn. (5) becomes:

( AGR -AGPf
pit--=n M (7)

The terms within parentheses are constant with respect
to pi, and sum to 1. Hence eqn. (7) can only be true for
all pi when:

ni mi :P=pi (8)
Further, by combining eqns. (3) and (5):

In ai-In a,, = pi(AGR-AGP) (9)
it can be seen that In ai is different from In ao when AGR
and AGP are unequal.
The requirements of eqns. (8) and (9) are exemplified

in Fig. 1 for the condition that ai > 1,
k = lnaz-Inao > 0.

Origin of the stable state In a,
The basic assumption of the exponential model is that

only one conformational state of the protein, represented
by In ai, is stable at the fractional saturation, pi. We now
consider a possible cause for this condition.
The exponential model equation for a single ligand can

be re-arranged to give:

Pi * In (Ii1-Pi) - In(° (10)

But:

In( i) - (GP-GR)-(Gf'- GR)
=(GP -GF) (GP-GR) (l

Hence by eqn. (8):

In ( I)= (1-ps) [(GP - GP) - (GI - GI)]

= (1 -Pi) (AG, - AGO) (12)

By a similar transformation of In (ao/ac), or more
directly from eqn. (3), we can modify eqn. (10) to
read:

(PAO[(-Pi)" * In (a-)] (1-Pi)t [(Pi), * In (z ) (14)

where the subscript c defines the connection between
fractional saturation and the conformational energy
differences established by eqns. (I I)-(13). The second
subscript t is introduced to show that the lifetimes of the
ligand-bound and ligand-free forms of the protein, in its
conformation In ai, must be in proportion to the ratio
(pi)t/(l -Pi)t. Now, the stable conformations corres-
ponding to the bound and free states of the protein
are defined by In a, and In a,, respectively; it can be
concluded, therefore, that the conformation In ai relaxes
in the directions In a. and In ao during the time intervals
(pi)t and (1 Pp)t. The form of eqn. (14) then suggests the
followingfurtherconclusions. First, the ratio( -pi),/(pi),
represents the relative rates of first-order decays of
conformational energy that are equally proportional
to the conformational energy differences established
respectively between In ai and the limiting conform-
ations In a, and In oeo. Secondly, the equality
(Pi)t -IPi)c = (1 -pi)t (pi), requires that the lifetimes
(pX)t and (1 -pi)t must be very short in comparison with
the lifetime of conformational change in order that the
terms (I -pi) and (pi), may become the tangents to the
curves that represent conformational relaxation at In aX
and pi.
The interpretation of eqn. (14) as being the represen-

tation of a system in slow conformational equilibrium
precludes the existence of stable protein states other than
In ot at a given pi and therefore of the equilibria between
definable co-existing states that form the basis for the
Adair equation (Weber & Anderson, 1965; Weber,
1965).
The interpretation also implies that maintenance of the

state In ai atpi is an active process. How this comes about
may be examined by supposing that a second conform-
ation In as1 exists at the ligand concentration Ai, the latter
being determined by the defined values of Inai and pi.
Eqn. (14) now becomes:

or:

In ( i)= (1 -pi) ln (a)in-) (::)~ (13)
(pwi)t [( I-ps)c an ca ) a (sa-pt )t (p)c lneae (i 15)

where pji is the fractional saturation of molecules in state
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In aj at ligand concentration Ai, defined by:

Pji=
Ai
+ i and Ai= 1Pi I

1+Aijcc-i -

(16)

pj, by contrast, is the fractional saturation consistent
with the conformational state Inaj, and its relation to
Inao and Ina,. pj is therefore defined by analogy with
eqn. (3).

Both sides of eqn. (15) represent changes in free
energy. Hence when the left-hand side of the inequality
is negative the protein structure relaxes towards Ina,;
similarly, a negative value for the right-hand side
represents relaxation towards Inao and vice versa with
change of sign. With these requirements, eqn. (15) gives:

kpji+ln( °) = Rj 0O
,1iLna

(17)

where R is a free-energy difference that takes a negative
value when the net relaxation of protein structure is in
the direction In ao. Hence, by comparison with the other
quantities in the equation, we can write:

R; = In (ak) (18)

where In ak is the state produced from In aj because of the
incompatability of In aj and Ai. It is easily shown by
calculation that for:

(19)

Eqn. (19) shows that protein conformations with
Ina,cx In ai undergo a structural change corresponding
to a movement to state In ak where In ctj Z In ak Z In ai.
As a result, in the absence of countervailing forces, all
molecules originally in the state In aci return to state In at
by a series of consecutive transformations In aj - inlna,k -

InaL---mdnaj. Eqn. (19) therefore establishes Inai as the
only stable state of the protein when randomization
forces are assumed absent. The stabilization energy for
the transformation In a} into In ak then becomes:

Si = - R

Distribution of protein molecules in states In a

(20)

1.0

0.8 p= 0.1 pi_O.

0.6

0.2 k-22 k±2

0 0.1 0.2 0.3 0.4 0.5
Pk

Fig. 2. Number of molecules nj, with fractional saturation Pk
obtained when the corresponding monodisperse system is
described by Ai, pi and In ai, with In ao = 0 and k = + 2
or -2 (eqn. 2)

The distribution of nj for values of Pk greater than 0.5 is
obtained by reflecting the Figure about the vertical axis
through Pk = 0.5.

Table 1. Values of the exponential model constants In ao and k
calculated from Ina= f(p) where the data wer(
produced by the distribution discussed in the text,
obtained with pi = 0.1 to 0.9, step 0.1, and the true
constants given in the Table

The measured constants given in the Table also provide the
lines:
k(true) = 1.158 (±0.008)*k(measured) +0.028 (±0.014)
ln 0O(measured)

= 0.079 (+ 0.004) * k(measured) + 0.0 14 ( 0.007)

True values Measured values+ S.D.

ln aO k ln aO k

0 3.9
3.0
2.0
1.5
1.0
0.5

-0.5
-1.0
-1.5
-2.0

0.247 + 0.027
0.232 + 0.008
0.171 +0.005
0.130+0.006
0.086+ 0.005
0.042+0.003

-0.038 +0.003
-0.070+0.006
-0.096+0.007
-0.114+0.007

3.406 + 0.050
2.536+0.014
1.657+0.009
1.239+0.011
0.827+0.010
0.416+0.006

-0.424+0.006
-0.859+0.010
- 1.308+0.013
- 1.771 +0.012

In the steady state of the system Si must be equal and
opposite to the energy of randomization, T1, which
creates state In acj from In aLk [Randomization must
inevitably occur because the quantities (pi)t and (1 -Pi)t
for individual molecules have values distributed about
the averages for the assembly.] If it is assumed that Tj and
S: take place consecutively and independently it can be
concluded that the n, molecules established by Tj have a
conformation Inak established by Sj. Correspondingly,
nk molecules have a binding constant of a1 and so on. The
relative number of molecules in the In aj and In ak states
is calculated by assuming a Boltzmann distribution:

-= exp (-T;) (21)

However, to calculate the overall distribution of nj it is
more convenient to normalize with respect to ni = 1, i.e.:

nj=exp aI aJ
) |]x (22)

Fig. 2 illustrates distributions nj = f(pk) calculated by
a simple program based on eqns. (16)-(22). The
calculation depends on the assumption that the protein
has access to an indefinite span of conformational
energies, linearly related to In aj, but demonstrates that
the S1 transformation brings all molecules into the
required conformational range In a to In a when the
steady state is achieved.

Experimental determination of the parameters of the
single-ligand exponential model
The determination of In a0 and k for the single-

substrate exponential model depends on a plot of the
relationship between In ai and pi, where pi is the
observed fractional saturation at ligand concentration A
and: _ . 1

Inai,= InKIpA) (23)
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The program described above calculates values of the
averages In a andp, corresponding to defined values ofpi,
k and Inao, on the assumption that the number of
molecules in state In ak is given by n1 as described in the
preceding section. Table 1 then gives the line constants
of the relationships In a = f(p), for pi = 0.1 to 0.9, step
0.1, at different values of k with In aO set to zero. It will
be observed throughout that Ina is a linear function of
p but that the calculated values of k are some 16%
smaller than the true values. Again, as k increases, the
calculated values of Inao progressively diverge from
zero. (The Table legend gives the linear regression of
k(true) on k(measured) and of In Zo(measured) on k(measured)
Good linear relationships are observed.)
The calculations undertaken in this section show

clearly that a distribution of protein conformations
consistent with the model does not hide the basic
relationship that was predicated on a monodisperse
system.

DISCUSSION
The interpretation of the exponential model equations,

developed in the preceding section, depends on several
assumptions. These are now discussed in turn.

The protein has distinct structures in the ligand-bound
and ligand-free states

This assumption requires little justification, supported
as it is by the detailed structural analysis of oxy- and
deoxy-haemoglobin (Perutz, 1970) and by the generality
of its application (Monod et al., 1965; Koshland et al.,
1966).

The protein undergoes continuous conformational change
The essential assumption embodied in eqn. (14) is that

the conformation of the protein can undergo continuous
change in passing between the limits corresponding to
In aco and In a,. Ample evidence exists that proteins have
the flexible structures necessary to achieve the change
(Englander et al., 1972; Artymiuk et al., 1979;
Frauenfelder et al., 1979; McCammon et al., 1979; Beece
et al., 1980; Karplus & McCammon, 1986), and flexibility
is central to commonly held views of enzyme action
(Koshland, 1958). Furthermore, the equilibria between
protein tautomeric species, postulated as the basis for the
Adair binding equation (Weber & Anderson, 1965), must
shade into a structural relaxation continuous with pi as
the number of tautomers increases. Differentiation
between the two schemes is finally a matter of semantics
(Huber, 1979).

Long conformational lifetimes
The critical assumption that therefore differentiates

eqns. (1) and (2) from an Adair model is the statement
that the enzyme takes much longer to relax from one
limiting structure to the other than it does to change its
binding state (Weber, 1965; Weber & Anderson, 1965).

Support for the assumption can be mustered from two
directions, that is by considering factors that either
lengthen the lifetime of structural relaxation or shorten
the lifetimes of the free and bound states. In both cases
the oligomeric structure of the protein appears to be
important.

There is nothing in the development of the exponential
model to prevent its application to monomeric proteins,

yet it is clear that regulatory function is almost
completely limited to oligomeric enzymes. To this point,
Weber (1975) has related the rate of appearance of a
protein conformation to the number of non-covalent
bonds of average energy that have to be broken in the
process. Thus it can be shown that structural fluctuations
involving eight to ten amino acid residues take place only
once a second. This condition is more likely to arise when
structural effects originating in protein subunits are
applied across common boundaries. In Weber's (1975)
view, the resulting increase in the energy difference
between the liganded and ligand-free states, with its
opportunities for modulation, is the cause of the
evolution of multi-chain proteins.

Again, with regard to the shortening of the lifetimes of
the ligand-bound and ligand-free states of the protein, it
is likely that structure is important. It has been suggested
that, because of van der Waals adsorption, the
concentration of substrate molecules on the surface of an
enzyme is much larger than that in the bulk solution
(Zhou & Zhong, 1982). If so, estimates of the rates of
dissociation, dependent on the estimation of the bulk
concentration of ligands, may well be too low.
Correspondingly, rates of association will be greater than
expected. These effects are likely to be more important
with oligomeric enzymes than with simple monomers
because of the increase in the number of binding sites
disposed on or near the adsorbing surface of the protein.
Indeed, it is considerations of this sort that underpin the
assumption of benefit that is supposed to result from the
aggregation of several enzymes into structurally defined
complexes or loose associations (Welch, 1977; Gaertner,
1978; Keleti, 1984).

Quasi-equilibrium
The interpretation of the exponential model as

essentially a steady-state system indicates that the
determination of affinity constants by eqn. (23) and their
relation to free-energy changes can only be justified by
the assumption of quasi-equilibrium, that is, by the
assumption that the binding and dissociation reactions of
the enzyme-ligand system are fast in comparison with
the rate at which structural relaxation of the enzyme
changes its ligand affinity. A quasi-equilibrium assump-
tion, however, has already been invoked in order to relate
the initial velocities of the enzyme-catalysed reaction to
the fractional saturation of the enzyme by its substrates
(Ainsworth, 1977). Its extended application therefore
requires the rate of product formation to be lower than
the rate at which the enzyme changes its structure with
saturation. In this connection, it is interesting to note
that protein relaxation may also be involved in the
enzyme catalysis of substrate reaction, as distinct from
substrate binding (Blumenfeld, 1976): if so, the assump-
tion that has been made requires the first type of
relaxation to be slower than the second.

Conclusion
The purpose of this paper has been to establish that the

exponential model offers a plausible explanation of
regulatory behaviour, the more important because it is, in
comparison with other alternatives, parsimonious in its
employment of disposable constants (Ainsworth, 1977;
Morris et al., 1986). For all that, no proof of its validity
has been provided. The -combination of a suitable
equation and, when several ligands are involved, a more
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than adequate number of constants is usually sufficient
to ensure that a reasonable fit to data is achieved. It is
therefore likely that a more searching examination of
validity will turn on the determination of the lifetimes
involved: for example, support would be provided if the
rate of conformational change were shown to be
distinctly less than the rates of binding and release of the
ligand by the protein.
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